

Comparing Arctic Sea Ice Kinematics from Satellite Remote Sensing Data to ECCO2 Model Results

<u>Gunnar Spreen</u>, Ron Kwok, Dimitris Menemenlis, An T. Nguyen

Jet Propulsion Laboratory, California Institute of Technology

Motivation (1)

Sea ice deformation in the Arctic climate system:

- Divergence creates open water \rightarrow new ice growth in winter
- Convergence creates pressure ridges → thicker ice
- Controls heat and moisture fluxes to the atmosphere and brine rejection to the ocean
- Alters the air and water drag coefficients
- → Correct modeling of sea ice kinematics important for sea ice mass balance and ocean – air energy fluxes

Motivation (2)

Sea ice model evaluation with ice deformation fields:

- Mean sea ice velocity field is behaving similar to a turbulent fluid → predicted correctly by simple models [Rampal et al., 2009].
- Comparisons with first order mean velocity fields therefore not sufficient. Second order sea ice deformation should be used.

Tuning the ECCO2 sea ice model:

- Traditional Hibler-type ice model with elliptical yield curve
 - Sea ice deformation field is not represented correctly in all details
 - But it is widely used in climate research.
- Tune model to best represent observed sea ice kinematics

Outline

Comparison of observed RADARSAT Geophysical Processor System (RGPS) SAR sea ice deformation fields to ECCO2 MITgcm model results

- Part 1: Dependence on model resolution
- Part 2: Dependence on model sea ice strength formulation

RGPS and ECCO2 Sea Ice Deformation

ECCO2 Meeting, Pasadena, 2009

Fractional Number of Deformed Cells

- The absolute amount of deformation variables divergence, vorticity, and shear depends on the spatial scale over which they are measured (e.g. Stern and Lindsay, 2009).
- Using the fractional number of times a grid cell was deformed (div > 0.02/day OR shear > 0.03/day) during a given period for comparisons.

Ice Pressure (Strength)

Sea ice pressure formulation: $P_{max} = P^* h^n e^{[C^*(1-a)]}$

$$P_{max} = P^* h^n e^{[C^*(1-a)]}$$

h: ice thickness;

a: ice concentration

Control parametrization:

$$P^* = 22640$$

Test parametrization:

$$P^* = 5660$$

Test – Control Difference

- Difference in fract. number of deformed cells and velocity:
 Test Control ice strength formulation
- → More deformed cells, especially in seasonal ice zone.
- → higher ice velocity in seasonal ice zone.

Time Series of Deformed Cells

Time series of deformed cells for winter months 1996-2008.

Difference RGPS-ECCO2

	mean [%]			st. dev.	corr.
	all	MY	FY	all	all
18km control	4.2	2.9	7.0	8.3	0.86
18km test	0.0	0.4	1.0	5.5	0.89
9km control	4.3	2.3	7.5	8.3	0.87
9km test	-0.1	-0.6	0.7	5.9	0.90

all: 52 months

MY, FY: 24 months

→ New ice pressure formulation improves ice deformation distribution independent of model resolution.

Conclusions

- Observed RGPS data and ECCO2 model results show similar large scale sea ice deformation patterns but small scale deformations, like fracture zones, are very different.
- Increase in model resolution produces more and stronger confined ice deformation features, the general deformation distribution and amplitude, however, does not change significantly → model physics seem to be inadequate for correct reproduction of all aspects of sea ice kinematics.
- A change of the model sea ice strength formulation away from the linear dependence on ice thickness can improve the modeled sea ice deformation distribution compared to observations.